Abstract

The sensor properties of nanostructured In2O3-CeO2 composite films with different compositions in hydrogen and carbon monoxide detection in air in the temperature range 280–500°C were studied. The temperature curves of the sensor effect S have a shape typical for metal oxide sensors with maxima S max at definite temperatures Tmax. The maxima characterize the sensor properties of the films and increased considerably when small amounts of CeO2 were added to In2O3. The highest sensitivity was found in composite films with 3–10 wt % CeO2. When the composite was further enriched with ceric oxide, the sensitivity decreased; at 40 wt % CeO2 it was considerably lower than that of pure In2O3. The introduction of CeO2 in In2O3 also caused a shift of Tmax toward lower temperatures. The mechanism of the sensitivity of the In2O3-CeO2 composite was considered; it includes the promotion of sensor reactions by small CeO2 nanoclusters lying on the surface of In2O3 crystals and an electron transfer from In2O3 to CeO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call