Abstract
Abstract This paper introduces a multi-objective optimisation approach for the challenging problem of efficient sensor placement in water distribution networks for contamination detection. An important question is how to identify the minimal number of required sensors without losing the capacity to monitor the system as a whole. In this study, we adapted the NSGA-II multi-objective optimisation method by applying centrality mutation. The approach, with two objectives, namely the minimisation of Expected Time of Detection and maximisation of Detection Network Coverage (which computes the number of detected water contamination events), is tested on a moderate-sized benchmark problem (129 nodes). The resulting Pareto front shows that detection network coverage can improve dramatically by deploying only a few sensors (e.g. increase from one sensor to three sensors). However, after reaching a certain number of sensors (e.g. 20 sensors), the effectiveness of further increasing the number of sensors is not apparent. Further, the results confirm that 40–45 sensors (i.e. 31 − 35% of the total number of nodes) will be sufficient for fully monitoring the benchmark network, i.e. for detection of any contaminant intrusion event no matter where it appears in the network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.