Abstract
The aim of this paper is twofold: (i) to define appropriate metrics which measure the effects of input sensor noise on the performance of signal-level image fusion systems and (ii) to employ these metrics in a comparative study of the robustness of typical image fusion schemes whose inputs are corrupted with noise. Thus system performance metrics for measuring both absolute and relative degradation in fused image quality are proposed when fusing noisy input modalities. A third metric, which considers fusion of noise patterns, is also developed and used to evaluate the perceptual effect of noise corrupting homogenous image regions (i.e. areas with no salient features). These metrics are employed to compare the performance of different image fusion methodologies and feature selection/information fusion strategies operating under noisy input conditions. Altogether, the performance of seventeen fusion schemes is examined and their robustness to noise considered at various input signal-to-noise ratio values for three types of sensor noise characteristics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.