Abstract

The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process, a separate sensory system is required. The use of separate sensory systems leads to heavy and bulky tools, in contrast to compact and light sensory systems that are needed to reach sufficient accuracy and accessibility. In the solution presented in this paper all three subprocesses are integrated in one compact multipurpose welding head. This multi-purpose tool is under development and consists of a laser welding head, with integrated sensors for seam detection and inspection, while also carrying interfaces for process control. It can provide the relative position of the tool and the work piece in three-dimensional space. Additionally, it can cope with the occurrence of sharp corners along a three-dimensional weld path, which are difficult to detect and weld with conventional equipment due to measurement errors and robot dynamics. In this paper the process of seam detection will be mainly elaborated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call