Abstract
High-precision and robust localization is critical for intelligent vehicle and transportation systems, while the sensor signal loss or variance could dramatically affect the localization performance. The vehicle localization problem in an environment with Global Navigation Satellite System (GNSS) signal errors is investigated in this study. The error state Kalman filtering (ESKF) and Rauch-Tung-Striebel (RTS) smoother are integrated using the data from Inertial Measurement Unit (IMU) and GNSS sensors. A segmented RTS smoothing algorithm is proposed in order to estimate the error state, which is typically close to zero and mostly linear, which allows more accurate linearization and improved state estimation accuracy. The proposed algorithm is evaluated using simulated GNSS signals with and without signal errors. The simulation results demonstrate its superior accuracy and stability for state estimation. The designed ESKF algorithm yielded an approximate 3% improvement in long straight line and turning scenarios compared to classical EKF algorithm. Additionally, the ESKF-RTS algorithm exhibited a 10% increase in the localization accuracy compared to the ESKF algorithm. In the double turning scenarios, the ESKF algorithm resulted in an improvement of about 50% in comparison to the EKF algorithm, while the ESKF-RTS algorithm improved by about 50% compared to the ESKF algorithm. These results indicated that the proposed ESKF-RTS algorithm is more robust and provides more accurate localization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.