Abstract
Almost once a week broadcasts about earthquakes, hurricanes, tsunamis, or forest fires are filling the news. While oneself feels it is hard to watch such news, it is even harder for rescue troops to enter such areas. They need some skills to get a quick overview of the devastated area and find victims. Time is ticking, since the chance for survival shrinks the longer it takes till help is available. To coordinate the teams efficiently, all information needs to be collected at the command center. Therefore, teams investigate the destroyed houses and hollow spaces for victims. Doing so, they never can be sure that the building will not fully collapse while they are inside. Here, rescue robots are welcome helpers, as they are replaceable and make work more secure. Unfortunately, rescue robots are not usable off-the-shelf, yet. There is no doubt, that such a robot has to fulfil essential requirements to successfully accomplish a rescue mission. Apart from the mechanical requirements it has to be able to build a 3D map of the environment. This is essential to navigate through rough terrain and fulfil manipulation tasks (e.g. open doors). To build a map and gather environmental information, robots are equipped with multiple sensors. Since laser scanners produce precise measurements and support a wide scanning range, they are common visual sensors utilized for mapping. Unfortunately, they produce erroneous measurements when scanning transparent (e.g. glass, transparent plastic) or specular reflective objects (e.g. mirror, shiny metal). It is understood that such objects can be everywhere and a pre-manipulation to prevent their influences is impossible. Using additional sensors also bear risks. The problem is that these objects are occasionally visible, based on the incident angle of the laser beam, the surface, and the type of object. Hence, for transparent objects, measurements might result from the object surface or objects behind it. For specular reflective objects, measurements might result from the object surface or a mirrored object. These mirrored objects are illustrated behind the surface which is wrong. To obtain a precise map, the surfaces need to be recognised and mapped reliably. Otherwise, the robot navigates into it and crashes. Further, points behind the surface should be identified and treated based on the object type. Points behind a transparent surface should remain as they represent real objects. In contrast, Points behind a specular reflective surface should be erased. To do so, the object type needs to be classified. Unfortunately, none of the current approaches is capable to fulfil these requirements. Therefore, the following thesis addresses this problem to detect transparent and specular reflective objects and to identify their influences. To give the reader a start up, the first chapters describe: the theoretical background concerning propagation of light; sensor systems applied for range measurements; mapping approaches used in this work; and the state-of-the-art concerning detection and identification of transparent and specular reflective objects. Afterwards, the Reflection-Identification-Approach, which is the core of subject thesis is presented. It describes 2D and a 3D implementation to detect and classify such objects. Both are available as ROS-nodes. In the next chapter, various experiments demonstrate the applicability and reliability of these nodes. It proves that transparent and specular reflective objects can be detected and classified. Therefore, a Pre- and Post-Filter module is required in 2D. In 3D, classification is possible solely with the Pre-Filter. This is due to the higher amount of measurements. An example shows that an updatable mapping module allows the robot navigation to rely on refined maps. Otherwise, two individual maps are build which require a fusion afterwards. Finally, the last chapter summarizes the results and proposes suggestions for future work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.