Abstract

Localization aims to provide the best estimate of the robot pose. It is a crucial algorithm in every robotics application, since its output directly determines the inputs of the robot to be controlled in its configuration space. In real world of engineering, the robot dynamics related measurements are subject to both uncertainties and disturbances. These error sources yield unreliable inferences of the robot state, which inherently result in wrong consensus about the appropriate control strategy to be applied. This outcome may drive the system out of stability and damage both the physical system and its environment. The localization algorithm captures the uncertainties with probabilistic approaches. Namely, the measurement processes are modelled along with their unreliability, moreover, the synergy of multiple information sources is formulated with the aim to calculate the most probable estimate of the robot pose. In essence, this algorithm is composed of two main parts, i.e., first the dynamics of the system is derived, and the corresponding uncertainties are initially predicted, next the additional sensor information is incorporated in the algorithm to refine the posterior estimate. This approach provides the state-of-the-art solution for the derivation of mobile robot poses in real applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.