Abstract
Lightweight and low-cost wearable magnetic and inertial measurement units (MIMUs) have found numerous applications, such as aerial vehicle navigation or human motion analysis, where the 3D orientation tracking of a rigid body is of interest. However, due to the errors in measurements of gyroscope, accelerometer, and/or magnetometer inside a MIMU, numerous studies have proposed sensor fusion algorithms (SFAs) to estimate the 3D orientation accurately and robustly. This paper contributes to these efforts by performing an experimental comparison among a variety of SFAs. Notably, we compared the estimated orientation of 36 SFAs from the complementary filter and linear/extended/complementary/unscented/cubature Kalman filter families with the reference orientation obtained from a camera motion-capture system. The experimental study included data collection with a foot-worn MIMU where nine participants performed various short- and long-duration tasks. We shared the codes and sample of data in https://www.ncbl.ualberta.ca/codes to enable other researchers to compare their works with the literature toward creating a comprehensive online repository for SFAs. To perform a fair comparison, we used the Particle Swarm Optimization routine to find the optimal adaptive gain tuning scheme for each SFAs, as recommended in the literature. Our experimental results showed that gyroscope static bias removal, in general, showed to be effective in reducing the estimation error of SFAs, specifically during long-duration trials. Moreover, our experimental results identified the SFAs with the highest accuracy from each family. We also reported the execution times for the selected SFAs from each family. This paper is among the first experimental comparison studies which provide such breadth of coverage across various SFAs for tracking orientation with MIMUs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.