Abstract

Satellite attitude determination accuracy significantly drops when sensor-fault occurs. Hence, a proper mitigation strategy to detect sensor-fault and accurately estimate corresponding fault magnitudes is mandatory for robust and accurate attitude determination. In this paper, a novel sensor-fault tolerant precise attitude estimator is proposed consisting of two stages. In the first stage, sensor-fault is detected, and the associated sensor parameter change is roughly estimated using an interacting multiple-model (IMM) approach. Subsequently, the second stage is triggered. The sensor parameter change is precisely estimated with a new sensor-parameter-augmented filter. This is defined as a selectively augmented extended Kalman filter (SAEKF) in this paper. The conventional augmented extended Kalman filter (AEKF) is computationally more expensive than the proposed SAEKF. The SAEKF augments only the sensor parameters affected by sensor-faults, not the full sensor parameters, into the state vector. This leads to a significant computational time-saving. A transition method from the first stage to the second stage is also investigated. Numerical simulation results demonstrate that the proposed two-stage approach has smaller attitude determination errors than the existing algorithms, ranged from 21.7% to 88.8%, in cases with gyro scale factor error or misalignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.