Abstract

In this paper, a novel sensor fault detection, isolation, and identification (FDII) strategy is proposed using the multiple-model (MM) approach. The scheme is based on multiple hybrid Kalman filters (MHKFs), which represents an integration of a nonlinear mathematical model of the system with a number of piecewise linear (PWL) models. The proposed fault detection and isolation (FDI) scheme is capable of detecting and isolating sensor faults during the entire operational regime of the system by interpolating the PWL models using a Bayesian approach. Moreover, the proposed MHKF-based FDI scheme is extended to identify the magnitude of a sensor fault using a modified generalized likelihood ratio method that relies on the healthy operational mode of the system. To illustrate the capabilities of our proposed FDII methodology, extensive simulation studies are conducted for a nonlinear gas turbine engine. Various single and concurrent sensor fault scenarios are considered to demonstrate the effectiveness of our proposed online hierarchical MHKF-based FDII scheme under different flight modes. Finally, our proposed hybrid Kalman filter (HKF)-based FDI approach is compared with various filtering methods such as the linear, extended, unscented, and cubature Kalman filters corresponding to both interacting and noninteracting MM-based schemes. Our comparative studies confirm the superiority of our proposed HKF method in terms of promptness of the fault detection, lower false alarm rates, as well as robustness with respect to the engine health parameter degradations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.