Abstract
An online model-based fault detection and isolation method for salient permanent magnet synchronous motors is proposed using the parity-space approach. Given the polynomial model equations, Buchberger’s algorithm is used to eliminate the unknown variables (e.g. states, unmeasured inputs) resulting in analytic redundancy relations for residual generation. Furthermore, in order to obtain the derivatives of measured signals needed by such a residual generator, robust exact differentiators are used. The fault detection and isolation method is demonstrated using simulation of various fault scenarios for a speed controlled salient motor showing the effectiveness of the presented approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.