Abstract

AbstractThis paper aims at the blade root moment sensor fault detection and isolation issue for three‐bladed wind turbines with horizontal axis. The underlying problem is crucial to the successful application of the individual pitch control system, which plays a key role for reducing the blade loads of large offshore wind turbines. In this paper, a wind turbine model is built based on the closed loop identification technique, where the wind dynamics is included. The fault detection issue is investigated based on the residuals generated by dual Kalman filters. Both additive faults and multiplicative faults are considered in this paper. For the additive fault case, the mean value change detection of the residuals and the generalized likelihood ratio test are utilized respectively. For multiplicative faults, they are handled via the variance change detection of the residuals. The fault isolation issue is proceeded with the help of dual sensor redundancy. Simulation results show that the proposed approach can be successfully applied to the underlying issue. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.