Abstract

This paper proposes a new nonlinear fault detection and diagnosis (FDD) scheme for the inertial measurement unit (IMU) sensor of an unmanned quadrotor helicopter (UQH). To mitigate the impact of model uncertainties, the kinematic model of an UQH rather than the dynamic model is employed to design the FDD scheme. A two-stage extended Kalman filter (TSEKF) is developed for detecting, isolating and identifying IMU sensor faults. Considering that the TSEKF is insensitive to time-varying faults, two adaptive two-stage extended Kalman filters are further proposed by integrating TSEKF with different forgetting factor schemes. Several experiments have been designed and implemented on an UQH platform to test the proposed FDD scheme, where bias fault, drift fault and oscillatory fault are considered. The results demonstrate that the proposed FDD methods are effective for detecting and estimating the IMU sensor faults in different fault scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.