Abstract

This paper is on the subject of sensor development and sensor-set size optimization approaches for Proton Exchange Membrane Fuel Cell (PEMFC) system in Fuel Cell Electric Vehicles (FCEV) applications. Sensors are classified as physical sensors and gas sensors. Physical sensors are used to detect signals (pressure, mass flow, etc.) which are related to PEMFC system operating state and control. Gas sensors consist of the hydrogen leakage detector for safety reasons and the environment sensor system which is built with various gas sensors to detect gas contaminations (COx, SOx, etc.). Depending on the sensor development review and the sensor specifications comparisons, sensors owning low cost, small volume, fast response, high resolution, excellent stability and durability are favored in FCEV applications. Nevertheless, numerous sensors result in the increase of system complexity, cost, and even the reduction of effectiveness for the fuel cell prognostics and health management algorithms. Thus, sensor-set size optimization and capability validation approaches (model-based, data-driven and hybrid) are reviewed in detail. As a result, a sensor-set size optimization framework is proposed. Some future work on fuel cell sensor system development and optimization is also suggested to facilitate the move towards commercialization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.