Abstract
The Heating, Ventilation, and Air conditioning (HVAC) system is a major system in buildings for conditioning the indoor environment. Sensor data validation and fault diagnosis for HVAC systems are essentially important to secure a reliable and efficient operation since sensor measurements are vital for the HVAC closed-loop control system. The aim of this work is to address this matter by developing a data-driven approach using the system's normal operation data and without the need for the knowledge of the mathematical model of the system. It is based on an Auto-Associative Neural Network (AANN) that is structured and trained to construct an input-output mapping model based on data dimensionality reduction that is capable of validating sensor measurements in terms of sensor error correction, missing data replacement, noise filtering, and inaccuracy correction. It can be used for both single and multiple sensor faults diagnosis by monitoring the consistency between the actual and the AANN-estimated sensor reading. The validation of the proposed method is demonstrated on data obtained from a 3-zone HVAC system simulated in TRNSYS. The evaluation results show the effectiveness of the proposed approach and an improvement in terms of data validation and diagnostic accuracy when compared with a PCA-based method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.