Abstract

The problem addressed in this paper is information theoretic sensor control for recursive Bayesian multi-object state-space estimation using random finite sets. The proposed algorithm is formulated in the framework of partially observed Markov decision processes where the reward function associated with different sensor actions is computed via the Rényi or alpha divergence between the multi-object prior and the multi-object posterior densities. The proposed algorithm in implemented via the sequential Monte Carlo method. The paper then presents a case study where the problem is to localise an unknown number of sources using a controllable moving sensor which provides range-only detections. Four sensor control reward functions are compared in the study and the proposed scheme is found to perform the best.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.