Abstract
System identification methods have extensive application in the aerospace industry’s experimental stability and control studies. Accurate aerodynamic modeling and system identification are necessary because they enable performance evaluation, flight simulation, control system design, fault detection, and model aircraft’s complex non-linear behavior. Various estimation methods yield different levels of accuracies with varying complexity and computational time requirements. The primary motivation of such studies is the accurate quantification of process noise. This research evaluates the performance of two recursive parameter estimation methods, viz.; First is the Fourier Transform Regression (FTR). The second approach describes the Extended version of Recursive Least Square (EFRLS), where E.F. refers to the Extended Forgetting factor. Also, the computational viability of these methods was analyzed for real-time application in aerodynamic parameter estimation for both linear and non-linear systems. While the first method utilizes the frequency domain to evaluate aerodynamic parameters, the second method works when noise covariances are unknown. The performance of both methods was assessed by benchmarking against parameter estimates from established methods like Extended Kalman Filter (EKF), Unscented Kalman Filter (UNKF), and Output Error Method (OEM).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.