Abstract
Recently, the advanced driver assistance system (ADAS) of autonomous vehicles (AVs) has offered substantial benefits to drivers. Improvement of passenger safety is one of the key factors for evolving AVs. An automated system provided by the ADAS in autonomous vehicles is a salient feature for passenger safety in modern vehicles. With an increasing number of electronic control units and a combination of multiple sensors, there are now sufficient computing aptitudes in the car to support ADAS deployment. An ADAS is composed of various sensors: radio detection and ranging (RADAR), cameras, ultrasonic sensors, and LiDAR. However, continual use of multiple sensors and actuators of the ADAS can lead to failure of AV sensors. Thus, prognostic health management (PHM) of ADAS is important for smooth and continuous operation of AVs. The PHM of AVs has recently been introduced and is still progressing. There is a lack of surveys available related to sensor-based PHM of AVs in the literature. Therefore, the objective of the current study was to identify sensor-based PHM, emphasizing different fault identification and isolation (FDI) techniques with challenges and gaps existing in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.