Abstract

Lanthanide ions are appealing for luminescence applications due to their sharp and tunable emission lines spanning the whole spectral range. However, the parity‐forbidden nature of the electronic transition in lanthanide ions typically results in ineffective excitation processes, which is a major obstacle to practical applications of lanthanide‐based luminescent materials. Herein, a general method to sensitize lanthanide luminescence within a semiconductor host of CaZnOS is developed. Efficient energy transfer from the host to a series of lanthanide ions with the assistance of Cu+ or Mn2+ codopants is demonstrated, which introduces intermediate energy states to mediate the energy transfer processes. Accordingly, a wide spectrum of emission is achieved by a single band excitation in the near‐ultraviolet region. Due to the efficient host sensitization, a phosphor‐converted light‐emitting diode (LED) is constructed by integrating the lanthanide‐doped CaZnOS with an ultraviolet LED chip, which is used for near‐infrared studies of biological tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.