Abstract

Cocrystallization assembles multicomponent crystals in defined ratios that are held together by intermolecular interactions. While cocrystals have seen extensive use in the pharmaceutical industry for solving issues with stability and solubility, extension to the field of energetic materials for improved properties has proven difficult. Predicting successful coformers remains a challenge for systems lacking well-understood synthons that promote reliable intermolecular assembly. Herein, an alternative method is investigated for altering energetic properties that operates in the absence of well-defined interactions by molecular doping. An impact sensitive primary explosive, cyanuric triazide (CTA), was selected as the dopant to test if less impact sensitive secondary explosives could gain increased sensitization to impact when CTA is inserted into their crystal lattices. Molecular doping was successful in sensitizing three melt-castable energetics: 2,4,6-trinitrotoluene (TNT), 2,4-dinitroanisole (DNAN), and 1,3,3-trinitroazetidine (TNAZ). CTA could also be incorporated as a stabilized inclusion to sensitize DNAN further. These results demonstrate how the judicious choice of dopant can lead to specific property improvements, providing a method for creating energetic materials with new properties to access metal-free primary explosives and physical hot spot models for explosive ignition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call