Abstract

Sulfur-containing compounds, such as mercaptans, alkali sulfides, alkali sulfites, and alkali thiosulfates, are byproducts of industrial processes and pollutants of waste and natural waters. Other sulfur-containing compounds such as yperite are dangerous chemical weapons. Efficient photocatalytic decomposition of these molecules is a process that can find applications in emergency situations or for the controlled destruction of chemical warfare stockpiles. A series of heterogeneous photocatalysts consisting of a metal phthalocyanine or 2,4,6-triphenylpyrylium as photoactive components encapsulated inside the cavities of zeolite Y or the mesoporous channels of MCM-41 or supported on silica or titania-silica was tested for the photocatalytic decomposition of yperite. Two types of photoreactors, either an open reactor naturally aerated or a closed quartz tube with a constant airflow using UV or visible ambient light were used. These tests demonstrated that iron and manganese phthalocyanine and 2,4,6-triphenylpyrylium embedded in NaY or titania-silica can be suitable solid photocatalysts for the degradation of yperite using UV and visible irradiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.