Abstract
Low sensitivity is a key problem in inelastic electron tunneling spectroscopy (IETS) with the scanning tunneling microscope. Using first-principles simulations, we predict different means to tune the IETS sensitivity of symmetrical functional aromatics on a Cu(111) surface. We show how the IET-spectra of phenyl-NO2 compounds can be greatly enhanced as compared to pristine phenyl. More precisely, the NO2 substituent qualifies as a sensitizer of low-frequency wagging modes, but also as a quencher of high-frequency stretching modes. At variance, the CO2 substituent is found to suppress the whole IET-activity. The head-up (non-anchoring) and head-down (anchoring) configurations of the functional group lead to minor changes in the signals, nevertheless allowing access to discriminate configurational features. It is shown how to disentangle the electronic and steric effects of the substituent in the STM junction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.