Abstract
This paper proposes to extend the exploration of mouse melanoma B16 cells death by photodynamic therapy (PDT), under irradiation with different light sources and in the presence of 5,10,15,20-tetrap-sulphonato-phenyl-porphyrin (TSPP). The viability studies showed that B16 mouse melanoma is sensitive to photodynamic damage induced by TSPP 1 mM for either one, two, three or four hours. The control had TSPP added immediately prior to timelapse imaging (no incubation). They were then irradiated with red light He-Ne laser (λ = 632.8 nm, energy 180 J/cm2 for 20 min). Also, it has been used a laser diode GaInAs 25 mW/cm2, λ = 650 nm. The cells demonstrated clear morphological changes associated with apoptosis by mitochondrial pathway. There were changes in texture, as expected. Changes appeared to occur more quickly at lamp irradiation than at HeNe and GaInAs diode laser. Addition of TSPP just prior to exposure and observation, with no incubation, did not result in changes in cell morphology or cell death. Also, the proteins changes have been observed, because those with high molecular weights have been scissored under irradiation and this could be reason of the proteins concentrating in the area of low molecular weights, and the dissapearing of the proteic band of 75 kDa in the electrophoregramm. The immunized animals with B16-TSPP had the highest survival rate (40 days) by comparison with the control (death at 20 days) or with immunized animals with supernatants B16 (death at 25 days).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.