Abstract

Gadusols are efficient nature UV sunscreens with antioxidant capacity. The kinetics of the quenching reactions of singlet oxygen O2(1∆g) by gadusol species was evaluated in aqueous solution as well as in the presence of direct charged micelles. Time-resolved phosphorescence detection of O2(1∆g) indicated that gadusolate, the main species under biological pH, is a more efficient quencher than the enol form with a rate constant of ca. 1.3 × 108 L mol−1 s−1. The deactivation proceeds via a collisional mechanism with clear dominance of chemical pathways, according to the rates of gadusol and oxygen consumptions, and typical photooxidation quantum yields of ca. 7%. The relative contributions of the chemical and physical quenching steps were not affected by the presence of anionic or cationic micelles emulating simple pseudo-biological environments. The products of the photo-oxidative quenching support a type II mechanism initiated by the addition of O2(1∆g) to the C-C double bond of gadusolate. These results point to the relevance of considering the role of sacrifice antioxidant along with the UV-screening function for gadusol, particularly in the context of potential biotechnological applications of this natural molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.