Abstract
We have previously shown that milk sensitization aggravates intestinal dysfunction in the malnourished guinea pigs, suggesting that it may also impair the recovery from malnutrition. To test this hypothesis, the growing guinea pigs were malnourished by feeding only maize for 7 d and then were refed for 21 d with a balanced diet containing either intact or hydrolyzed cow's milk proteins. The control animals received the hydrolyzed milk protein diet for 28 d. After an initial period of total inhibition of growth owing to maize, guinea pigs gained weight regularly, with both balanced diets, and there was no evidence of mucosal damage at the end of the refeeding period. However, refeeding with intact milk proteins induced milk sensitization, which was demonstrated on the systemic level by the presence of anti-beta-lactoglobulin IgG1 antibodies, and on the local level by the intestinal anaphylaxis measured by the increase in short circuit current induced by beta-lactoglobulin (16.4 +/- 2.6 microA/cm2) in jejunal segments mounted in Ussing chambers. Such an immune sensitization was associated with impaired intestinal permeability, as both the ionic conductance (21.0 +/- 1.6 versus 14.6 +/- 0.7 mS/cm2) and the transepithelial fluxes of horseradish peroxidase (537 +/- 203 versus 152 +/- 28 ng/h x cm2) were significantly increased in guinea pigs refed with the intact milk proteins compared with controls. In contrast, there was no difference in intestinal permeability between controls and guinea pigs refed with the hydrolyzed milk protein diet. These data show that sensitization to cow's milk proteins can develop in guinea pigs recovering from severe malnutrition and may impair full intestinal repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.