Abstract
As the heart of photoelectrochemical (PEC) cells, the photocatalyst plays a significant role in hydrogen production through PEC water splitting. In this study, the graphene nanoribbon (GNR) was used as a platform for enhancing the semiconductor properties. Naphthalene diimide (NDI) was covalently attached to the GNR surface to improve the light absorption and the charge carrier properties. Due to its unique chemical and electron structure, NDI is highly compatible with GNR and has led to increased electron transport from the photoelectrode surface to the semiconductor conduction band (TiO2). Then, to enhance the electrocatalytic activity of GNR, palladium was immobilized on the platform. The final composition was coated by drop-casting on TiO2 nanoarrays and used as a photoelectrode in a PEC cell. The electrochemical results showed the produced photocurrent density of 1.16 mA/cm2 at 1.1 V vs. RHE, and there was a significant increase compared to unmodified TiO2. The composition was characterized to examine the structures using FTIR, XRD, XPS, FESEM, and HRTEM analysis. Finally, due to the appropriate characteristics of GNR, we can hope for further studies to achieve higher efficiencies in PEC cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.