Abstract
In the absence of cAMP the cyclic AMP receptor protein (CRP) is relatively resistant to trypsin whereas the cAMP X CRP complex is attacked yielding N-terminal core fragments of 14,300 and 18,500 Da which still bind cAMP. The DNA X CRP complex formed at low ionic strength in the absence of cAMP is cleaved by trypsin with the formation of 9,700- and 6,000-Da fragments and the concomitant loss of cAMP binding activity. DNA X CRP remains as resistant to attack by subtilisin, clostripain, and the Staphylococcus aureus V8 protease as unliganded CRP but is slowly digested by chymotrypsin. All of the double-stranded polydeoxyribonucleotides and several of the single-stranded polydeoxyribonucleotides and polyribonucleotides tested render CRP sensitive to cleavage by trypsin. CRP is less rapidly cleaved by trypsin in the presence of d(A)n, d(I)n, and r(C)n indicative of a weaker affinity of CRP for these polynucleotides. The 9,700-Da fragment is N-terminal in CRP and probably terminates at Lys-89. The loss of cAMP binding activity following trypsin cleavage of DNA X CRP indicates that regions beyond this residue are important in the function of the cAMP-binding domain of CRP. The 6,000-Da fragment extends from Val-131 to Arg-185 or Lys-188 and contains part of the F helix involved in DNA binding by CRP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.