Abstract

The optical properties of reactive co-sputtered erbium doped silicon rich oxynitride (Er:SRON) films are studied as a function of annealing temperatures (Ta). The sensitization mechanism of Er3+ is found to evolve with Ta: excess Si related localized states play the essential role in samples when Ta is below 700 °C, while silicon nanoclusters (Si-NCs) become the dominate sensitizers when Ta exceeds 800 °C. Our results show that higher density of sensitized Er3+ could be acquired via energy transfer from localized states, and thus provide an alternative way for the engineering of light sources based on Er:SRON.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.