Abstract

Abstract. The top-down atmospheric inversion method that couples atmospheric CO2 observations with an atmospheric transport model has been used extensively to quantify CO2 emissions from cities. However, the potential of the method is limited by several sources of misfits between the measured and modeled CO2 that are of different origins than the targeted CO2 emissions. This study investigates the critical sources of errors that can compromise the estimates of the city-scale emissions and identifies the signal of emissions that has to be filtered when doing inversions. A set of 1-year forward simulations is carried out using the WRF-Chem model at a horizontal resolution of 1 km focusing on the Paris area with different anthropogenic emission inventories, physical parameterizations, and CO2 boundary conditions. The simulated CO2 concentrations are compared with in situ observations from six continuous monitoring stations located within Paris and its vicinity. Results highlight large nighttime model–data misfits, especially in winter within the city, which are attributed to large uncertainties in the diurnal profile of anthropogenic emissions as well as to errors in the vertical mixing near the surface in the WRF-Chem model. The nighttime biogenic respiration to the CO2 concentration is a significant source of modeling errors during the growing season outside the city. When winds are from continental Europe and the CO2 concentration of incoming air masses is influenced by remote emissions and large-scale biogenic fluxes, differences in the simulated CO2 induced by the two different boundary conditions (CAMS and CarbonTracker) can be of up to 5 ppm. Nevertheless, our results demonstrate the potential of our optimal CO2 atmospheric modeling system to be utilized in atmospheric inversions of CO2 emissions over the Paris metropolitan area. We evaluated the model performances in terms of wind, vertical mixing, and CO2 model–data mismatches, and we developed a filtering algorithm for outliers due to local contamination and unfavorable meteorological conditions. Analysis of model–data misfit indicates that future inversions at the mesoscale should only use afternoon urban CO2 measurements in winter and suburban measurements in summer. Finally, we determined that errors related to CO2 boundary conditions can be overcome by including distant background observations to constrain the boundary inflow or by assimilating CO2 gradients of upwind–downwind stations rather than by assimilating absolute CO2 concentrations.

Highlights

  • Worldwide, almost two-thirds of global final energy consumption takes place in urban agglomeration areas that have a high population density and corresponding infrastructure, and cities directly release about 44 % of the global energyrelated CO2 emissions (IEA, 2016; Seto et al, 2014)

  • Since the accuracy of the modeled CO2 concentrations depends on the quality of the meteorological model, the simulated meteorology by WRF was first evaluated against observations at SAC100 and SIRTA stations with a focus on three variables

  • Both daytime and nighttime temperature are well reproduced by WRF with a correlation coefficient, root mean square error (RMSE), and mean bias error (MBE) of respectively 1.0, 0.44 ◦C, and 0.06 ◦C for daytime and 0.99, 0.67 ◦C, and 0.23 ◦C for nighttime

Read more

Summary

Introduction

Almost two-thirds of global final energy consumption takes place in urban agglomeration areas that have a high population density and corresponding infrastructure, and cities directly release about 44 % of the global energyrelated CO2 emissions (IEA, 2016; Seto et al, 2014). The so-called atmospheric inversion provides an optimized estimate of CO2 emissions aiming at the best agreement between atmospheric CO2 measurements and their simulated equivalents It relies on the filtering of the CO2 signal associated with the urban emissions at the targeted spatial and temporal scales from other sources of misfits between measured and modeled CO2 concentrations. These other sources of misfits include uncertainties in the atmospheric transport, in atmospheric CO2 conditions that are used at the boundaries of the regional model, in the natural CO2 fluxes within the modeling domain, and in the spatial and temporal distribution of the urban emissions at scales finer than the targeted ones. Uncertainties and variability in those biogenic fluxes significantly affect the results of atmospheric inversions (Hardiman et al, 2017)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.