Abstract

RNA interference (RNAi) is a common tool for analysis of gene function in both model and non-model insects, but it is becoming evident that RNAi efficiency varies considerably from species to species. We examined RNAi efficiency in larvae of the armyworm Mythimna separata (Walker) using multiple genes and tissues. First, we showed that five different target genes exhibited distinct tissue distribution patterns by quantitative determination of mRNA in total hemocytes, foregut, midgut, hindgut, Malpighian tubules and fat body: neuroglian mRNA was most abundant in fat body; inhibitor of apoptosis proteins mRNA was found to be ubiquitous; aquaporin 4 mRNA was most enriched in hindgut; cueball and prophenoloxidase 2 were mainly expressed in hemocytes. Second, we assessed sensitivity to gene silencing by double-strand RNA injection of these five genes in the six different tissues. We found that these genes generally showed refractoriness to double-strand RNA-mediated gene knockdown irrespective of the tissue tested. Finally, we demonstrated that appreciable gene knockdown was achieved at least in the adhering hemocyte fraction when larval isolated abdomen was prepared by ligation and subjected to dsRNA injection. Our study thus added detailed information on the refractoriness of larval tissues of a lepidopteran insect to gene silencing through RNAi and provided a new potential approach to improve RNAi efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.