Abstract

This study presents results on the humidity-sensing properties of titanium dioxide thin films measured by a quartz microbalance. A novel two-layer structure, consisting of a polymer sub-layer and a sensing titanium dioxide layer, was fabricated on a quartz resonator. The polymer sub-layer was synthesized by a plasma process from hexamethyldisiloxane to protect the resonator's surface during the deposition of the titanium dioxide film by magnetron sputtering. The TiO2 films were characterized by X-ray diffraction and Auger Electron Spectroscopy. The film composition was determined to be close to that of stoichiometric TiO2. The sensitivity to humidity varied from 5 Hz/%RH to 7 Hz/%RH for TiO2 film thickness lying in the range of 18–70 nm. An increase of film thickness in this interval led to a slight decrease in sensitivity, which is explained by water sorption occurring principally at the surface of the titanium dioxide film and a change of the morphology to a higher surface smoothness for thicker films. It was found that 30–60 min of sorption time is necessary to completely eliminate hysteresis, which suggests that the process is reversible.These results are promising for the development of sensor devices for measuring the relative humidity of air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.