Abstract

We investigated tolerance to high salinity in well-irrigated diploid and tetraploid citrus. Comparisons were made between two diploids (2×) of trifoliate orange (Poncirus trifoliata (L.) Raf.) and willow leaf mandarin (Citrus deliciosa Ten), their respective doubled diploids (4×) and the allotetraploid (FLHORAG1) obtained from the protoplast fusion of trifoliate orange and Willow leaf mandarin. Salinity stress was applied by progressively increasing the concentration of NaCl from 50 mM to 400 mM for 8 weeks. Two-year-old plants were watered daily. Maximum quantum yield of PSII, and leaf and root chloride and sodium content were monitored. We previously reported that under moderate saline stress, citrus 4× genotypes were more tolerant that the 2×, but under these experimental conditions, 4× seedlings were certainly more sensitive to salt stress than 2×, as they accumulated more toxic ions and were more affected than 2×. Chloride accumulation in 4× leaves was greater and the maximum quantum yield of PSII was more reduced in 4× than in 2×. The expression of several candidate genes involved in signal transduction, sodium and chloride transport, osmotic adjustment, regulation of the stomata opening and detoxification processes were also investigated by quantitative real-time reverse transcription-PCR. A high correlation was observed between phenotype of sensitivity to stress and gene expression changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.