Abstract

The gravitropic curvature of seedlings of lentil (Lens culunaris L. cv. Verte du Puy) grown in microgravity and stimulated on the 1 g centrifuge for 5 to 60 min was followed by time lapse photography in near weightlessness in the frame of the IML 1 Mission of Spacelab. In microgravity, the root tip could overshoot the direction of the 1 g acceleration after bending whereas roots stimulated on the ground did not reach the direction of the gravity vector. On earth, there is, therefore, a regulation (inhibition of root curvature), which is gravity dependent. In space, the initial rate of curvature as well as the amplitude of curvature varied as a function of the quantity of stimulation (Q, in gmin). For a given quantity of stimulation, the rate of curvature remained constant for 80 min. The bending has thus a certain inertia, which is linked to the mechanism of differential growth. The presentation time (Tp) of the lentil root was calculated by extrapolation to zero curvature of the regression line representing either the initial rate of curvature or the amplitude of curvature at 2 h after the end of the stimulation. Tp was estimated to 27 and 26 s, respectively. These results confirm the values of Tp obtained by clinostats, and they also lead to a reconsideration of the causes of the kinetics of root curvature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.