Abstract

Cyclosporin A, a cyclic fungal undecapeptide produced by Tolypocladium inflatum, is a potent immunosuppressive drug originally isolated as an antifungal antibiotic. Cyclosporin A (CsA) is widely used in humans to prevent rejection of transplanted organs such as kidney, heart, bone marrow and liver. The biochemical basis of CsA action is not known: its primary cellular target has been suggested to be calmodulin, the prolactin receptor or cyclophilin, a CsA-binding protein originally isolated from the cytosol of bovine thymocytes. Cyclophilin has been shown to be a highly conserved protein present in all eukaryotic cells tested and to be identical to peptidyl-prolyl cis-trans isomerase, a novel type of enzyme that accelerates the slow refolding phase of certain proteins in vitro. We demonstrate that in the lower eukaryotes N. crassa and S. cerevisiae, cyclo philin mediates the cytotoxic CsA effect. In CsA-resistant mutants of both organisms, the cyclophilin protein is either lost completely or, if present, has lost its ability to bind CsA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call