Abstract

The sensitivity of multilayer thin-film bulk acoustic resonators (MTFBARs) used as mass sensors is investigated. MTFBAR sensors with the structure of a mass-sensitive layer/electrode layer/piezo layer/electrode layer were used. Two methods, one using electric impedance and the other displacement, were adopted for the determination of sensitivity. Simulation results show that the two methods agree well, and the characteristic acoustic impedance and thickness of the non-piezo layers strongly affect mass sensitivity. It was found that high acoustic impedance in the non-piezo layer is not helpful for sensitivity improvement. Sensitivity is improved by choosing an appropriate thickness for the low acoustic impedance non-piezo layer, and the maximum sensitivity can be obtained by choosing suitable thickness combinations for the layers. Moreover, it was found that MTFBAR quality factor and sensitivity are simultaneously improved by adopting a high-quality-factor non-piezo layer with low acoustic impedance for an air working environment, whereas a balance between quality factor and sensitivity is found through optimization of the non-piezo layers for a water working environment. These results can be used for the design and application of MTFBAR mass sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call