Abstract

The development of a cyclonic vortex over a polynya is investigated with the primitive equation mesoscale model METRAS. The impact of different atmospheric processes on vortex development is determined by calculating the terms of the vorticity tendency equation. Sensitivity studies are performed for different large-scale situations (geostrophic winds 1 ms−1, 3 ms−1, 20 ms−1, initial ice-water temperature difference of 35 K or 17.5 K) and for different polynya sizes and shapes. In general, the vortex develops within a few hours. It is intensified by buoyancy, mainly resulting from latent heat release. Advective and diffusive processes hinder the vortex development. The intensification depends on the actual situation and is faster over small polynyas and heterogeneous ice cover. These situations result in intensification periods of only 12 to 18 hours for the vortex, but create very strong vortices. Halved horizontal temperature gradients also about halve the vortex intensity. The lifetime and intensification of a vortex increases with the time the air mass spends over the water. Thus, weak winds show a slower development of the vortex but the vortex intensifies for more than 24 hours. Over big polynyas several vortices develop, a long polynya results in a longer and narrower vortex which intensifies over a longer period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.