Abstract
AbstractIn this paper we investigate the sensitivity of local precipitation statistics to surface heat fluxes in an urban subdomain in the Pearl River Delta region, which is situated along the coast of south China. By conducting simulations of a past record‐breaking rainfall event with a cloud‐resolving model, we found that rainfall rates and the spatial distribution of accumulated rainfall are very sensitive to imposed urban surface heat fluxes. Diagnostics of the planetary boundary layer show increasing fluctuations of turbulence and buoyant turbulence production with increasing surface heat emission, causing increased near‐surface mixing and convection. Heavy precipitation rates show a higher sensitivity than lighter rates. The extreme tail of the distribution is hence more affected. This study serves as an example of how sensitive the magnitude of local high impact weather phenomena can be to local forcing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.