Abstract

Recent evidence has demonstrated that chlorine radical chemistry can enhance tropospheric volatile organic compound oxidation and has the potential to enhance ozone formation in urban areas. In order to investigate the regional impacts of chlorine chemistry in southeastern Texas, preliminary estimates of atmospheric releases of atomic chlorine precursors from industrial point sources, cooling towers, water and wastewater treatment, swimming pools, tap water, reactions of chlorides in sea salt aerosols, and reactions of chlorinated organics were developed. To assess the potential implications of these estimated emissions on urban ozone formation, a series of photochemical modeling studies was conducted to examine the spatial and temporal sensitivity of ozone and a unique marker species for chlorine chemistry, 1-Chloro-3-methyl-3-butene-2-one (CMBO), to molecular chlorine emissions estimates. Based on current estimates of molecular chlorine emissions in southeastern Texas, chlorine chemistry has the potential to enhance ozone mixing ratios by up to 11–16 ppbv. Impacts varied temporally, with emissions from cooling towers primarily responsible for a morning enhancement in ozone mixing ratios and emissions from residential swimming pools for an afternoon enhancement. Maximum enhancement in CMBO mixing ratios ranged from 59 to 69 pptv.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.