Abstract

Abstract Several observational studies suggest that the vertical diffusivity in the Indonesian marginal seas is an order of magnitude larger than in the open ocean and what is used in most ocean general circulation models. The experiments described in this paper show that increasing the background diffusivity in the Banda Sea from the commonly used value of 0.1 cm2 s−1 to the observed value of 1 cm2 s−1 improves the watermass properties there by reproducing the observed thick layer of Banda Sea Water. The resulting reduced sea surface temperatures lead to weaker convection and a redistribution of precipitation, away from the Indonesian seas toward the equatorial Indian and Pacific Oceans. In particular, the boreal summer precipitation maximum of the Indonesian seas shifts northward from the Banda Sea toward Borneo, which reduces a longstanding bias in the simulation of the Austral–Asian Monsoon in the Community Climate System Model. Because of the positive feedback mechanisms inherent in tropical atmosphere dynamics, a reduction in Banda Sea heat loss of only 5% leads locally to a reduction in convection of 20%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call