Abstract

To optimize the measurement range of thermal conductivity vacuum gauges, an expression for the sensitivity is required that takes into account all geometrical, material-specific, and operating parameters. Therefore, equations of the sensor output signal as a function of the pressure for the constant current and the constant temperature mode have been developed analytically. Based on these equations, the sensitivity of the vacuum gauge and its influencing parameters was investigated and discussed. For comparable conditions, the constant temperature operation shows a significantly higher sensitivity for high pressures, while the constant current operation shows higher sensitivity at low pressures. The sensitivity in both the constant current and the constant temperature mode depends on the ratio of the filament surface area and the parasitic thermal conductance. In addition, for the constant current operation, the sensitivity also depends on the current value and the temperature coefficient of the filament resistor. For the constant temperature operation, the sensitivity additionally depends on the distance of the filament and the reference plane. However, to extend the measurement range of a thermal conductivity vacuum gauge toward low pressures, a reduction of the parasitic thermal conductance is mandatory for both the constant current and the constant temperature mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call