Abstract
The impact of the high space-temporal variability of the wind field during the moderate and intense storm stages of a tropical cyclone on the wave field as computed by the numerical model WaveWatch III is investigated in this work. The realistic wind fields are generated by a high-resolution implementation of the HWRF model in the Gulf of Mexico and stored over 15 min intervals. The spatial structure of the wind field computed by HWRF is highly variable in space and time, although its mean structure is very similar to that described for parametric hurricanes already specified in the previous studies. The resulting storm-generated wave fields have a persistent structure, with wave maxima present in the forward quadrants of the storm and in the rear quadrant II. This structure is determined by the strong winds and the extended fetch condition in quadrants I and II, as well as by the translation speed of the storm. When a shorter time interval is analyzed (e.g., a 3 h period, when the storm becomes a category 1 hurricane), the structure of the mean wind field may differ greatly from the mean field calculated with a sufficiently longer period; however, the spatial distribution of the wave field around the hurricane tends to maintain its typical spatial structure. The use of wind fields with reduced time variability (e.g., with a 3 h moving average) does not change the structure of the mean wave field, but reduces the mean wave height values by up to 10%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.