Abstract

The bound state of few-body systems in light nuclei is studied as a three-body problem. The three-body problem is solved following the different approaches of the Faddeev formalism as well as the unitary pole approximation. Separable approximations are introduced to reduce the three-body problem to a set of coupled integral equations. Numerical calculations are carried out for the resulting integral equations and the separable expansion. In the present work, we calculate the ground-state binding energy of the bound three-nucleon system3H. The main interest of the present work is to investigate the sensitivity of the three-body binding energy to different effects in the problem. For this reason, we study the dependence of the three-body binding energy of different forms of local and separable two-body potentials, on the effective range of the two-body potentials, and on the percent of theD state in the deuteron wave function. Also, we test the sensitivity of the three-body binding energy to the considered number of terms from the separable expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call