Abstract

Abstract A systematic investigation of the impact of current uncertainties in Hg emissions from specific source categories on global air Hg concentrations is presented. First, the uncertainties in different emission source categories are discussed and then the results of a base simulation and three sensitivity simulations conducted with a global chemical transport model for mercury (CTM-Hg) are presented. The total Hg emissions in the four scenarios range from 6600 to 9400 Mg/a. The sensitivity studies investigate the impact of the range in uncertainty in natural emissions, emissions of previously deposited Hg, and anthropogenic emissions both in China and worldwide, while taking into account constraints imposed by available data (current/pre-industrial emission ratio of 2–4). In one case, natural emissions and emissions of previously deposited Hg were changed to represent a mid point of the range of values found in the literature. This lead to a 16% increase in background emissions, i.e., natural emissions and emissions of previously deposited Hg combined. Increasing natural emissions by 16% or Chinese anthropogenic emissions by 100% yielded atmospheric Hg concentrations comparable with those measured across the globe without any changes to the atmospheric chemistry. Increasing natural emissions and emissions of previously deposited Hg by 16% and all anthropogenic emissions by 100% as compared to the base scenario yielded atmospheric Hg concentrations that were not compatible with measurements and changes in the chemical behavior of Hg in the atmosphere would be required to yield results that are consistent with observed Hg concentrations. The current uncertainty in total Hg emissions at the global scale is placed at about a factor of two.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call