Abstract

Muscle unloading imparts subtotal disuse on the neuromuscular system resulting in reduced performance capacity. This loss of function, at least in part, can be attributed to disruptions at the neuromuscular junction (NMJ). However, research has failed to document morphological remodeling of the NMJ with short term muscle unloading. Here, rather than quantifying cellular components of the NMJ, we examined subcellular active zone responses to 2 weeks of unloading in male Wistar rats. It was revealed that in the plantaris, but not the soleus muscles, unloading elicited significant (P ≤ 0.05) decrements in active zone staining as measured by Bassoon, and calcium channel expression. It was also discovered that unloading decreased the area of calcium channels staining relative to active zone areas of staining suggesting potential interference in the ability of calcium influx to trigger the release of vesicles docked at the active zone. Post-synaptic adaptations of the motor endplate were not evident. This presynaptic subcellular size reduction was not associated with atrophy of the underlying plantaris muscle fibers, although atrophy of the weight-bearing soleus fibers, where no subcellular remodeling was evident, was noted. These results suggest that the active zone is highly sensitive to alterations in neuromuscular activity, and that morphological adaptation of excitatory and contractile components of the NMJ can occur independently of each other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.