Abstract

Changes in regional temperature and precipitation expected to occur as a result of the accumulation of greenhouse gases may have significant impacts on water resources. We use a conceptual hydrologic model, developed and operated by the National Weather Service, to study the sensitivity of surface runoff in several sub-basins of the Colorado River to these changes. Increases in temperature of 2°C decrease mean annual runoff by 4–12%. A temperature increase of 4°C decreases mean annual runoff by 9–21%. Increases or decreases in annual precipitation of 10–20% result in corresponding changes in mean annual runoff of approximately 10–20%. For the range of scenarios studied, these results suggest that runoff in the basin is somewhat more sensitive to changes in precipitation than to changes in temperature. Seasonal changes were also observed, with peak runoff shifting from June to April or May. Fall and winter flows generally increase, whereas spring and summer flows decrease in most of the scenarios studied. These changes are attributed to an increase of the ratio of rain to snow and to a higher snowline. Although these results suggest that streamflow in the Colorado Basin is less sensitive to climatic changes than previous statistical studies have indicated, the magnitude of possible changes is nonetheless sufficiently great to have significant environmental, economic, and political implications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call