Abstract

The sensitivity of the low- and high-speed spinning processes incorporated with flow-induced crystallization has been investigated using frequency response method, based on process conditions employed in Lee et al. [1] and Shin et al. [2,3]. Crystallinity occurring in the spinline makes the spinning system less sensitive to any disturbances when it has not reached its maximum onto the spinline in comparison with the spinning case without crystallization. Whereas, the maximum crystallinity increases the system sensitivity to disturbances, interestingly exhibiting high amplitude value of the spinline area at the take-up in low frequency regime. It also turns out that neck-like deformation in the spinline under the high-speed spinning conditions plays a key role in determining the sensitivity of the spinning system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.