Abstract

The sensitivity of SnO2 nanoparticles/reduced graphene oxide hybrid to NO2 gas is discussed in the present work using density functional theory (DFT). The SnO2 nanoparticle shapes are taken as pyramids, as proved by experiments. The reduced graphene oxide (rGO) edges have oxygen or oxygen-containing functional groups. However, the upper and lower surfaces of rGO are clean, as expected from the oxide reduction procedure. Results show that SnO2 particles are connected at the edges of rGO, making a p-n heterojunction with a reduced agglomeration of SnO2 particles and high gas sensitivity. The DFT results are in good agreement with the experimental characterization of both SnO2 and rGO using energy gap and X-ray photoelectron spectroscopy (XPS) values. Gibbs free energy, enthalpy, and entropy of the various considered reactions are calculated. Results show that the sensitivity of the rGO/SnO2 hybrid to NO2 gas is the result of the interplay of the dissociation and oxidation reactions of NO2 gas. The sensitivity of the rGO/SnO2 hybrid to NO2 increases with temperature until the NO2 dissociation in the air reduces the concentration of NO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.