Abstract

The test results of an earlier experimental investigation conducted at Memorial University of Newfoundland on high-strength concrete slabs indicated that as the concrete slab strength increased from 35 to 75 MPa the shear strength increased by 7-20%, depending on the case of loading, i.e., concentric or eccentric loads. The increasing ratio of shear strength is less than half that prescribed in the Canadian code CSA-A23.3 (1994) or the ACI-318 code (1995). Hence, the significant difference between the experimental results and the predicted strength by existing North American codes tacitly means that the proportionality between the shear strength and the square root of the compressive strength is not accurate enough to predict the shear strength of high-strength concrete slabs. In the present investigation, a fracture mechanics model suitable for concrete was proposed. It was also suggested that this model might be an advantageous aid in the analysis of the shear failure of reinforced concrete slabs. In this research investigation the fracture mechanics approach utilizing finite element aided computer analysis of several reinforced slabs is briefly described, and calculated shear failure loads are given. The recommended model proves that it is necessary to consider not only the tensile strength of concrete, instead of the square root of the compressive strength, but also the tensile fracture properties of high-strength concrete. The tensile fracture properties of concrete are characterized by the parameter called characteristic length and the brittleness of concrete. The brittleness ratio of concrete slabs must be considered in any rational shear design expression to reflect the size effect factor and the aggregate type.Key words: fracture energy, uniaxial direct tension, shear strength, high-strength concrete, punching shear, slab, size effect, finite element analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.