Abstract

The sensitivity of rotational transitions in CH and CD to a possible variation of fundamental constants has been investigated. Largely enhanced sensitivity coefficients are found for specific transitions which are due to accidental degeneracies between the different fine-structure manifolds. These degeneracies occur when the spin-orbit coupling constant is close to four times the rotational constant. CH and particularly CD match this condition closely. Unfortunately, an analysis of the transition strengths shows that the same condition that leads to an enhanced sensitivity suppresses the transition strength, making these transitions too weak to be of relevance for testing the variation of fundamental constants over cosmological time scales. We propose a test in CH based on the comparison between the rotational transitions between the e and f components of the Omega'=1/2,J=1/2 and Omega'=3/2,J=3/2 levels at 532 and 536 GHz and other rotational or Lambda-doublet transitions in CH involving the same absorbing ground levels. Such a test, to be performed by radioastronomy of highly redshifted objects, is robust against systematic effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.