Abstract

The aim of this study was to demonstrate various methods of analysing terminal net blotch, Pyrenophora teres Drechs. f. teres Smedeg., severity data from 15 spring barleys, Hordeum vulgare L., grown in Finnish official variety trials in five environments. The analyses have been developed and used principally by plant breeders for assessing crop yield, but lend themselves to use by plant pathologists. Pyrenophora teres is the major barley phytopathogen in Finland and improved resistance to it is sought. Joint regression analysis (JRA) and an additive main effects and multiplicative interaction (AMMI) model were used to investigate the data. Statistically significant genotype by environment (GE) interaction for resistance was indicated, and this included qualitative (crossover) interactions among genotypes over environments. A stable, non‐sensitive, response to net blotch over environments, combined with a low mean score for terminal severity of the disease characterized the six‐row barley ‘Thule’ which showed statistically significant crossover interaction only with ‘Tyra’. ‘Kustaa’ exhibited the lowest mean terminal net blotch severity, but was relatively sensitive to net blotch. ‘Arve’ exhibited severe terminal net blotch in all environments, was relatively sensitive to environment and exhibited no crossover interaction with other genotypes. AMMI analysis appeared to represent a useful method for analysing these disease severity data, facilitating the selection of useful sources of resistance. Plots of AMMI‐adjusted mean net blotch severities against first principal component axis (PCA) scores were informative for differentiating genotype response over environments, and are therefore potentially useful to plant pathologists and barley breeders seeking to gauge and subsequently improve the resistance status of barley to net blotch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call